Home
ping()
GET: /ping
Endpoint to check if the server is running.
Returns:
| Name | Type | Description |
|---|---|---|
Response |
Response with status 200 if the server is running. |
Source code in app.py
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 | |
predict_bucket(input_location=Header(None), inference_parameters=Header(None), webhook_url=Header(None), write_to_gcs=Header(False), input_bucket_name=Header(None), output_bucket_name=Header(None), examination_id=Header(None))
POST: /bucket_invocations
Endpoint to process an image and send it to the inference server.
Headers
Input-Location: Location of the image in the GCS bucket. Webhook-Url: URL to send the results of the inference. Write-To-GCS: Bool flag to write the results to a GCS bucket. False by default. Input-Bucket-Name: Name of the input bucket. Output-Bucket-Name: Name of the output bucket. Examination-ID: ID of the examination, used to track the request results. Inference-Parameters: Parameters to send to the inference server. JSON string with the following keys
- nerve_zone_landmarks: optional, landmarks of the nerve zone returned by retinal_app
- nerve_zone_slice_indices: optional, slice indices of the nerve zone returned by retinal_app
- mm_crop_zone: how much to crop from the center of the image.
- mm_crop_zone_nerve: how much to crop from the center of the image for nerve zone.
- exam_center_coordinate: center coordinates of the image (obtained from fovea center model).
- slice_thickness: slice thickness parameter of the exam.
- pixel_spacing_column: pixel spacing column parameter of the exam.
- type_of_scan: type of scan, should be macula, widescan, optic_disk
- zone_of_interest: zone of interest to process. Could be "fovea", "nerve"
- scan_protocol: scan protocol, should be "VERTICAL_3D", "HORIZONTAL_3D", "UNKNOWN"
- num_slices: number of slices in the exam
Returns:
| Name | Type | Description |
|---|---|---|
|
JSON with the results of the inference: |
||
filename |
Name of the file that was processed. >1 if multiple files. |
|
status |
Status of the request. Can be "sent" or "error". |
|
result_path |
Path to the result in the GCS bucket. >1 if multiple files. |
|
request_uuid |
UUID of the request, generated by the server. Used to track the request results. >1 if multiple files, in correspondence with the filename. |
Raises:
| Type | Description |
|---|---|
Response
|
Error response if the content type is not supported. |
Source code in app.py
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 | |
predict_bucket_azure_uae(input_location=Header(None), inference_parameters=Header(None), webhook_url=Header(None), write_to_gcs=Header(False), input_bucket_name=Header(None), output_bucket_name=Header(None), examination_id=Header(None))
POST: /bucket_invocations
Endpoint to process an image and send it to the inference server.
Headers
Input-Location: Location of the image in the Azure Blob bucket. Webhook-Url: URL to send the results of the inference. Write-To-GCS: Bool flag to write the results to a GCS bucket. False by default. Input-Bucket-Name: Name of the input bucket. Output-Bucket-Name: Name of the output bucket. Examination-ID: ID of the examination, used to track the request results. Inference-Parameters: Parameters to send to the inference server. JSON string with the following keys
- scan_width: width of the scan window.
- mm_crop_zone: how much to crop from the center of the image.
- exam_center_coordinate: center coordinates of the image (obtained from fovea center model).
- pixel_spacing_column: pixel spacing column parameter of the exam.
Returns:
| Name | Type | Description |
|---|---|---|
|
JSON with the results of the inference: |
||
filename |
Name of the file that was processed. >1 if multiple files. |
|
status |
Status of the request. Can be "sent" or "error". |
|
result_path |
Path to the result in the GCS bucket. >1 if multiple files. |
|
request_uuid |
UUID of the request, generated by the server. Used to track the request results. >1 if multiple files, in correspondence with the filename. |
Raises:
| Type | Description |
|---|---|
Response
|
Error response if the content type is not supported. |
Source code in app.py
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 | |
predict_image(image=File(...), inference_parameters=Header(None), webhook_url=Header(None), examination_id=Header(None))
POST: /invocations
Endpoint to process an image and send it to the inference server.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
image
|
UploadFile
|
Image file to process (in the request body). |
File(...)
|
Headers
Inference-Parameters: Parameters to send to the inference server. JSON string with the following keys:
- slice_idx: index of the slice to process.
- nerve_zone_landmarks: optional, landmarks of the nerve zone returned by retinal_app
- nerve_zone_slice_indices: optional, slice indices of the nerve zone returned by retinal_app
- mm_crop_zone: how much to crop from the center of the image.
- mm_crop_zone_nerve: how much to crop from the center of the image for nerve zone.
- exam_center_coordinate: center coordinates of the image (obtained from fovea center model).
- slice_thickness: slice thickness parameter of the exam.
- pixel_spacing_column: pixel spacing column parameter of the exam.
- zone_of_interest: zone of interest to process. Could be "fovea", "nerve"
- num_slices: number of slices in the exam
- type_of_scan: type of scan, should be macula, widescan, optic_disk
- scan_protocol: scan protocol, should be "VERTICAL_3D", "HORIZONTAL_3D", "UNKNOWN"
Content-Type: Type of the image. Can be "image/jpeg", "image/png", "image/tiff", "image/bmp", "image/jpg". Webhook-URL: URL to send the results of the inference. Examination-ID: ID of the examination, used to track the request results.
Returns:
| Type | Description |
|---|---|
|
JSON with the results of the inference: |
|
|
|
|
|
|
Raises:
| Type | Description |
|---|---|
Response
|
Error response if the content type is not supported. |
Source code in app.py
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 | |
read_from_gcp_bucket(input_bucket, prefix)
Function to read images from a GCP bucket.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
prefix
|
str
|
Prefix to search for images in the bucket. |
required |
Returns:
| Name | Type | Description |
|---|---|---|
List |
Tuple[str, ndarray]
|
List of images read from the bucket. |
Source code in app.py
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 | |
result_callback(model_config, filename, request_uuid, result, error, client, webhook_url, examination_id)
Callback function to process the result of the inference request. Sends a webhook action to the callback service.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
model_config
|
dict
|
Model configuration dictionary. |
required |
filename
|
str
|
Name of the file that was processed. |
required |
initial_resolution
|
tuple
|
Initial resolution of the image. |
required |
result
|
list
|
List of output tensors. |
required |
error
|
Exception
|
Error that occurred during the request. |
required |
request_uuid
|
str
|
UUID of the request. |
required |
client
|
object
|
Triton client object. |
required |
webhook_url
|
str
|
URL of the webhook service. |
required |
examination_id
|
str
|
ID of the examination. |
required |
Source code in app.py
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 | |
result_image_bucket_callback(model_config, filename, result, error, client, request_uuid, webhook_url, output_bucket_name, examination_id, write_to_gcs=False)
Callback function to process the result of the inference request. Writes the result to a GCS bucket.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
model_config
|
dict
|
Model configuration dictionary. |
required |
filename
|
str
|
Name of the file that was processed. |
required |
initial_resolution
|
tuple
|
Initial resolution of the image. |
required |
result
|
list
|
List of output tensors. |
required |
error
|
Exception
|
Error that occurred during the request. |
required |
request_uuid
|
str
|
UUID of the request. |
required |
client
|
object
|
Triton client object. |
required |
webhook_url
|
str
|
URL of the webhook service. |
required |
write_to_gcs
|
bool
|
Flag to write the result to a GCS bucket. |
False
|
output_bucket_name
|
str
|
Name of the output bucket. |
required |
examination_id
|
str
|
ID of the examination. |
required |
Source code in app.py
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 | |
write_json_to_gcs(bucket_name, json_data, output_path)
Write JSON data to a specific folder in a GCS bucket.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
bucket_name
|
str
|
The name of the GCS bucket. |
required |
json_data
|
dict
|
The JSON data to be written. |
required |
output_path
|
str
|
The GCS path where the JSON file will be stored (e.g., 'folder/output_file.json'). |
required |
Source code in app.py
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 | |