Skip to content

Home

ping()

GET: /ping

Endpoint to check if the server is running.

Returns:

Name Type Description
Response

Response with status 200 if the server is running.

Source code in app.py
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
@app.get("/ping")
def ping():
    """
    # GET: /ping

    Endpoint to check if the server is running.

    Returns:
        Response: Response with status 200 if the server is running.
    """
    try:
        client = grpcclient.InferenceServerClient(
            url=config.grcp_model_server_address, verbose=False
        )
        return Response(status_code=200)
    except Exception:
        return Response(status_code=400)

predict_bucket(input_location=Header(None), inference_parameters=Header(None), webhook_url=Header(None), write_to_gcs=Header(False), input_bucket_name=Header(None), output_bucket_name=Header(None), examination_id=Header(None))

POST: /bucket_invocations

Endpoint to process an image and send it to the inference server.

Headers

Input-Location: Location of the image in the GCS bucket. Webhook-Url: URL to send the results of the inference. Write-To-GCS: Bool flag to write the results to a GCS bucket. False by default. Input-Bucket-Name: Name of the input bucket. Output-Bucket-Name: Name of the output bucket. Examination-ID: ID of the examination, used to track the request results. Inference-Parameters: Parameters to send to the inference server. JSON string with the following keys

- nerve_zone_landmarks: optional, landmarks of the nerve zone returned by retinal_app

- nerve_zone_slice_indices: optional, slice indices of the nerve zone returned by retinal_app

- mm_crop_zone: how much to crop from the center of the image.

- mm_crop_zone_nerve: how much to crop from the center of the image for nerve zone.

- exam_center_coordinate: center coordinates of the image (obtained from fovea center model).

- slice_thickness: slice thickness parameter of the exam.

- pixel_spacing_column: pixel spacing column parameter of the exam.

- type_of_scan: type of scan, should be macula, widescan, optic_disk

- zone_of_interest: zone of interest to process. Could be "fovea", "nerve"

- scan_protocol: scan protocol, should be "VERTICAL_3D", "HORIZONTAL_3D", "UNKNOWN"

- num_slices: number of slices in the exam

Returns:

Name Type Description

JSON with the results of the inference:

filename

Name of the file that was processed. >1 if multiple files.

status

Status of the request. Can be "sent" or "error".

result_path

Path to the result in the GCS bucket. >1 if multiple files.

request_uuid

UUID of the request, generated by the server. Used to track the request results. >1 if multiple files, in correspondence with the filename.

Raises:

Type Description
Response

Error response if the content type is not supported.

Source code in app.py
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
@app.post("/bucket_invocations")
def predict_bucket(
    input_location: str = Header(None),
    inference_parameters: str = Header(None),
    webhook_url: str = Header(None),
    write_to_gcs: bool = Header(False),
    input_bucket_name: str = Header(None),
    output_bucket_name: str = Header(None),
    examination_id: str = Header(None),
):
    """
    # POST: /bucket_invocations

    Endpoint to process an image and send it to the inference server.

    Headers:
        *Input-Location*: Location of the image in the GCS bucket.
        *Webhook-Url*: URL to send the results of the inference.
        *Write-To-GCS*: Bool flag to write the results to a GCS bucket. False by default.
        *Input-Bucket-Name*: Name of the input bucket.
        *Output-Bucket-Name*: Name of the output bucket.
        *Examination-ID*: ID of the examination, used to track the request results.
        *Inference-Parameters*: Parameters to send to the inference server. JSON string with the following keys

            - nerve_zone_landmarks: optional, landmarks of the nerve zone returned by retinal_app

            - nerve_zone_slice_indices: optional, slice indices of the nerve zone returned by retinal_app

            - mm_crop_zone: how much to crop from the center of the image.

            - mm_crop_zone_nerve: how much to crop from the center of the image for nerve zone.

            - exam_center_coordinate: center coordinates of the image (obtained from fovea center model).

            - slice_thickness: slice thickness parameter of the exam.

            - pixel_spacing_column: pixel spacing column parameter of the exam.

            - type_of_scan: type of scan, should be macula, widescan, optic_disk

            - zone_of_interest: zone of interest to process. Could be "fovea", "nerve"

            - scan_protocol: scan protocol, should be "VERTICAL_3D", "HORIZONTAL_3D", "UNKNOWN"

            - num_slices: number of slices in the exam


    Returns:
        JSON with the results of the inference:
        filename: Name of the file that was processed. >1 if multiple files.
        status: Status of the request. Can be "sent" or "error".
        result_path: Path to the result in the GCS bucket. >1 if multiple files.
        request_uuid: UUID of the request, generated by the server. Used to track the request results. >1 if multiple files, in correspondence with the filename.

    Raises:
        Response: Error response if the content type is not supported.
    """

    webhook_response = _check_webhook(webhook_url, examination_id)
    if webhook_response.status_code != 200:
        return webhook_response

    # get input and output locations
    input_bucket_to_use = (
        input_bucket_name if input_bucket_name is not None else config.input_bucket_name
    )
    output_bucket_to_use = (
        output_bucket_name if output_bucket_name is not None else config.output_bucket_name
    )

    start = time.time()
    images = asyncio.run(
        _read_from_gcp_bucket_async(input_bucket_to_use, input_location, examination_id, logger)
    )
    elapsed = time.time() - start

    logger.info(json.dumps({
        "status": "INFO",
        "message": f"Read {len(images)} images from GCP bucket {input_bucket_to_use}/{input_location}. Took {elapsed} seconds.",
        "examination_id": examination_id
    }))

    try:
        request_uuids = []
        result_paths = []
        filenames = []
        statuses = []

        for filename, image in images:
            client = grpcclient.InferenceServerClient(
                url=config.grcp_model_server_address,
                verbose=False,
                channel_args=(("grpc.lb_policy_name", "round_robin"),),
            )
            model_config = client.get_model_config(
                model_name=model_name, model_version=model_version, as_json=True
            )["config"]
            img = image
            img = img[np.newaxis, ..., np.newaxis].astype(np.float32)

            inputs = [
                grpcclient.InferInput("IMAGE", img.shape, np_to_triton_dtype(img.dtype)),
                grpcclient.InferInput("INPUT_JSON", (1, 1), "BYTES"),
            ]

            inputs[0].set_data_from_numpy(img)

            slice_idx = int(filename.split(".")[1])
            inference_params = inference_parameters.replace("'", '"')
            dict_inference_parameters = json.loads(inference_params)
            dict_inference_parameters["slice_idx"] = slice_idx

            zone_to_run = define_zone_to_run(dict_inference_parameters)
            request_uuid = str(uuid.uuid4())
            if zone_to_run is not None:
                dict_inference_parameters["zone_of_interest"] = zone_to_run
                inference_params = json.dumps(dict_inference_parameters)
                inputs[1].set_data_from_numpy(np.array([[inference_params]] * 1, dtype=np.object_))

                outputs = [
                    grpcclient.InferRequestedOutput(model_config["output"][i]["name"])
                    for i in range(len(model_config["output"]))
                ]

                request_uuids.append(request_uuid)
                result_paths.append(
                    f"{output_bucket_to_use}/{config.output_folder_name}/{request_uuid}.json"
                )
                filenames.append(filename)

                statuses.append("sent")

                response = client.async_infer(
                    model_name=model_name,
                    model_version=model_version,
                    inputs=inputs,
                    outputs=outputs,
                    callback=partial(
                        result_image_bucket_callback,
                        model_config=model_config,
                        filename=filename,
                        request_uuid=request_uuid,
                        client=client,
                        webhook_url=webhook_url,
                        write_to_gcs=write_to_gcs,
                        output_bucket_name=output_bucket_to_use,
                        examination_id=examination_id,
                    ),
                )
            else:
                filenames.append(filename)
                request_uuids.append(request_uuid)
                result_paths.append(None)
                statuses.append("no_zone_to_run")

        return JSONResponse(
            content={
                "filename": filenames if len(filenames) > 1 else filenames[0],
                "request_uuid": request_uuids if len(request_uuids) > 1 else request_uuids[0],
                "result_path": result_paths if len(result_paths) > 1 else result_paths[0],
                "status": statuses if len(statuses) > 1 else statuses[0],
                "examination_id": examination_id,
            },
            status_code=200,
        )

    except Exception as e:
        return JSONResponse(
            content={"error": str(e), "examination_id": examination_id}, status_code=400
        )

predict_bucket_azure_uae(input_location=Header(None), inference_parameters=Header(None), webhook_url=Header(None), write_to_gcs=Header(False), input_bucket_name=Header(None), output_bucket_name=Header(None), examination_id=Header(None))

POST: /bucket_invocations

Endpoint to process an image and send it to the inference server.

Headers

Input-Location: Location of the image in the Azure Blob bucket. Webhook-Url: URL to send the results of the inference. Write-To-GCS: Bool flag to write the results to a GCS bucket. False by default. Input-Bucket-Name: Name of the input bucket. Output-Bucket-Name: Name of the output bucket. Examination-ID: ID of the examination, used to track the request results. Inference-Parameters: Parameters to send to the inference server. JSON string with the following keys

- scan_width: width of the scan window.

- mm_crop_zone: how much to crop from the center of the image.

- exam_center_coordinate: center coordinates of the image (obtained from fovea center model).

- pixel_spacing_column: pixel spacing column parameter of the exam.

Returns:

Name Type Description

JSON with the results of the inference:

filename

Name of the file that was processed. >1 if multiple files.

status

Status of the request. Can be "sent" or "error".

result_path

Path to the result in the GCS bucket. >1 if multiple files.

request_uuid

UUID of the request, generated by the server. Used to track the request results. >1 if multiple files, in correspondence with the filename.

Raises:

Type Description
Response

Error response if the content type is not supported.

Source code in app.py
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
@app.post("/bucket_invocations_azure_uae")
def predict_bucket_azure_uae(
    input_location: str = Header(None),
    inference_parameters: str = Header(None),
    webhook_url: str = Header(None),
    write_to_gcs: bool = Header(False),
    input_bucket_name: str = Header(None),
    output_bucket_name: str = Header(None),
    examination_id: str = Header(None),
):
    """
    # POST: /bucket_invocations

    Endpoint to process an image and send it to the inference server.

    Headers:
        *Input-Location*: Location of the image in the Azure Blob bucket.
        *Webhook-Url*: URL to send the results of the inference.
        *Write-To-GCS*: Bool flag to write the results to a GCS bucket. False by default.
        *Input-Bucket-Name*: Name of the input bucket.
        *Output-Bucket-Name*: Name of the output bucket.
        *Examination-ID*: ID of the examination, used to track the request results.
        *Inference-Parameters*: Parameters to send to the inference server. JSON string with the following keys

            - scan_width: width of the scan window.

            - mm_crop_zone: how much to crop from the center of the image.

            - exam_center_coordinate: center coordinates of the image (obtained from fovea center model).

            - pixel_spacing_column: pixel spacing column parameter of the exam.

    Returns:
        JSON with the results of the inference:
        filename: Name of the file that was processed. >1 if multiple files.
        status: Status of the request. Can be "sent" or "error".
        result_path: Path to the result in the GCS bucket. >1 if multiple files.
        request_uuid: UUID of the request, generated by the server. Used to track the request results. >1 if multiple files, in correspondence with the filename.

    Raises:
        Response: Error response if the content type is not supported.
    """

    webhook_response = _check_webhook(webhook_url, examination_id)
    if webhook_response.status_code != 200:
        return webhook_response

    # get input and output locations
    input_bucket_to_use = (
        input_bucket_name if input_bucket_name is not None else config.input_bucket_name
    )
    output_bucket_to_use = (
        output_bucket_name if output_bucket_name is not None else config.output_bucket_name
    )

    images = _read_from_azure_uae_bucket(input_bucket_to_use, input_location)

    try:
        # Process the image contents here (e.g., save it, analyze it, etc.)
        response = _process_images(
            images,
            inference_parameters,
            output_bucket_to_use,
            webhook_url,
            write_to_gcs,
            examination_id,
        )
        return JSONResponse(
            content={
                "filename": response["filenames"],
                "request_uuid": response["request_uuids"],
                "result_path": response["result_paths"],
                "status": "sent",
                "examination_id": examination_id,
            },
            status_code=200,
        )
    except Exception as e:
        return JSONResponse(
            content={"error": str(e), "examination_id": examination_id}, status_code=400
        )

predict_image(image=File(...), inference_parameters=Header(None), webhook_url=Header(None), examination_id=Header(None))

POST: /invocations

Endpoint to process an image and send it to the inference server.

Parameters:

Name Type Description Default
image UploadFile

Image file to process (in the request body).

File(...)
Headers

Inference-Parameters: Parameters to send to the inference server. JSON string with the following keys:

- slice_idx: index of the slice to process.

- nerve_zone_landmarks: optional, landmarks of the nerve zone returned by retinal_app

- nerve_zone_slice_indices: optional, slice indices of the nerve zone returned by retinal_app

- mm_crop_zone: how much to crop from the center of the image.

- mm_crop_zone_nerve: how much to crop from the center of the image for nerve zone.

- exam_center_coordinate: center coordinates of the image (obtained from fovea center model).

- slice_thickness: slice thickness parameter of the exam.

- pixel_spacing_column: pixel spacing column parameter of the exam.

- zone_of_interest: zone of interest to process. Could be "fovea", "nerve"

- num_slices: number of slices in the exam

- type_of_scan: type of scan, should be macula, widescan, optic_disk

- scan_protocol: scan protocol, should be "VERTICAL_3D", "HORIZONTAL_3D", "UNKNOWN"

Content-Type: Type of the image. Can be "image/jpeg", "image/png", "image/tiff", "image/bmp", "image/jpg". Webhook-URL: URL to send the results of the inference. Examination-ID: ID of the examination, used to track the request results.

Returns:

Type Description

JSON with the results of the inference:

  • filename: Name of the file that was processed.
  • status: Status of the request. Can be "sent" or "error".
  • request_uuid: UUID of the request, generated by the server. Used to track the request results.

Raises:

Type Description
Response

Error response if the content type is not supported.

Source code in app.py
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
@app.post("/invocations")
def predict_image(
    image: UploadFile = File(...),
    inference_parameters: str = Header(None),
    webhook_url: str = Header(None),
    examination_id: str = Header(None),
):
    """
    # POST: /invocations

    Endpoint to process an image and send it to the inference server.

    Args:
        image (UploadFile): Image file to process (in the request body).

    Headers:
        *Inference-Parameters*: Parameters to send to the inference server. JSON string with the following keys:

            - slice_idx: index of the slice to process.

            - nerve_zone_landmarks: optional, landmarks of the nerve zone returned by retinal_app

            - nerve_zone_slice_indices: optional, slice indices of the nerve zone returned by retinal_app

            - mm_crop_zone: how much to crop from the center of the image.

            - mm_crop_zone_nerve: how much to crop from the center of the image for nerve zone.

            - exam_center_coordinate: center coordinates of the image (obtained from fovea center model).

            - slice_thickness: slice thickness parameter of the exam.

            - pixel_spacing_column: pixel spacing column parameter of the exam.

            - zone_of_interest: zone of interest to process. Could be "fovea", "nerve"

            - num_slices: number of slices in the exam

            - type_of_scan: type of scan, should be macula, widescan, optic_disk

            - scan_protocol: scan protocol, should be "VERTICAL_3D", "HORIZONTAL_3D", "UNKNOWN"

        *Content-Type*: Type of the image. Can be "image/jpeg", "image/png", "image/tiff", "image/bmp", "image/jpg".
        *Webhook-URL*: URL to send the results of the inference.
        *Examination-ID*: ID of the examination, used to track the request results.

    Returns:
        JSON with the results of the inference:
        - filename: Name of the file that was processed.
        - status: Status of the request. Can be "sent" or "error".
        - request_uuid: UUID of the request, generated by the server. Used to track the request results.

    Raises:
        Response: Error response if the content type is not supported.
    """

    client = grpcclient.InferenceServerClient(
        url=config.grcp_model_server_address,
        verbose=False,
        channel_args=(("grpc.lb_policy_name", "round_robin"),),
    )  # , concurrency=1, connection_timeout=10)
    model_config = client.get_model_config(
        model_name=config.model_name, model_version=config.model_version, as_json=True
    )["config"]

    content_type = image.content_type

    webhook_response = _check_webhook(webhook_url, examination_id)
    if webhook_response.status_code != 200:
        return webhook_response

    if content_type not in config.available_content_types:
        return Response(
            status=415,
            content="Cannot decode image data. Is content_type correct?",
            media_type="text/plain",
        )

    try:
        inference_params = inference_parameters.replace("'", '"')

        inference_params_dict = json.loads(inference_params)
        zone_to_run = define_zone_to_run(inference_params_dict)
        request_uuid = str(uuid.uuid4())
        if zone_to_run is not None:
            contents = image.file.read()

            image_bytes = np.frombuffer(contents, dtype=np.uint8)

            img = cv2.imdecode(image_bytes, cv2.IMREAD_GRAYSCALE)
            img = img[np.newaxis, ..., np.newaxis].astype(np.float32)

            inputs = [
                grpcclient.InferInput("IMAGE", img.shape, np_to_triton_dtype(img.dtype)),
                grpcclient.InferInput("INPUT_JSON", (1, 1), "BYTES"),
            ]
            inputs[0].set_data_from_numpy(img)

            inference_params_dict["zone_of_interest"] = zone_to_run
            inference_params = json.dumps(inference_params_dict)

            inputs[1].set_data_from_numpy(np.array([[inference_params]] * 1, dtype=np.object_))

            outputs = [
                grpcclient.InferRequestedOutput(model_config["output"][i]["name"])
                for i in range(len(model_config["output"]))
            ]

            response = client.async_infer(
                model_name=config.model_name,
                model_version=config.model_version,
                inputs=inputs,
                outputs=outputs,
                callback=partial(
                    result_callback,
                    model_config=model_config,
                    filename=image.filename,
                    request_uuid=request_uuid,
                    client=client,
                    webhook_url=webhook_url,
                    examination_id=examination_id,
                ),
            )

            return JSONResponse(
                content={
                    "filename": image.filename,
                    "status": "sent",
                    "request_uuid": request_uuid,
                },
                status_code=200,
            )
        else:
            return JSONResponse(
                content={
                    "filename": image.filename,
                    "message": "No zone to run",
                    "status": "no_zone_to_run",
                    "request_uuid": request_uuid,
                },
                status_code=200,
            )
    except Exception as e:
        return JSONResponse(
            content={
                "filename": image.filename,
                "message": str(e),
                "status": "error",
                "request_uuid": request_uuid,
            },
            status_code=400,
        )

read_from_gcp_bucket(input_bucket, prefix)

Function to read images from a GCP bucket.

Parameters:

Name Type Description Default
prefix str

Prefix to search for images in the bucket.

required

Returns:

Name Type Description
List Tuple[str, ndarray]

List of images read from the bucket.

Source code in app.py
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
def read_from_gcp_bucket(input_bucket: str, prefix: str) -> Tuple[str, np.ndarray]:
    """
    Function to read images from a GCP bucket.

    Args:
        prefix (str): Prefix to search for images in the bucket.

    Returns:
        List: List of images read from the bucket.
    """

    # make client
    client = storage.Client()

    # get bucket
    bucket = client.bucket(input_bucket)

    # get blobs
    blobs = bucket.list_blobs(prefix=prefix)

    images = []
    for blob in blobs:
        # read image
        image = cv2.imdecode(
            np.frombuffer(blob.download_as_string(), dtype=np.uint8), cv2.IMREAD_GRAYSCALE
        )
        images.append((blob.name, image))

    return images

result_callback(model_config, filename, request_uuid, result, error, client, webhook_url, examination_id)

Callback function to process the result of the inference request. Sends a webhook action to the callback service.

Parameters:

Name Type Description Default
model_config dict

Model configuration dictionary.

required
filename str

Name of the file that was processed.

required
initial_resolution tuple

Initial resolution of the image.

required
result list

List of output tensors.

required
error Exception

Error that occurred during the request.

required
request_uuid str

UUID of the request.

required
client object

Triton client object.

required
webhook_url str

URL of the webhook service.

required
examination_id str

ID of the examination.

required
Source code in app.py
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
def result_callback(
    model_config: dict,
    filename: str,
    request_uuid: str,
    result: Optional[list],
    error: Optional[Exception],
    client: object,
    webhook_url: str,
    examination_id: str,
) -> None:
    """
    Callback function to process the result of the inference request.
    Sends a webhook action to the callback service.

    Args:
        model_config (dict): Model configuration dictionary.
        filename (str): Name of the file that was processed.
        initial_resolution (tuple): Initial resolution of the image.
        result (list): List of output tensors.
        error (Exception): Error that occurred during the request.
        request_uuid (str): UUID of the request.
        client (object): Triton client object.
        webhook_url (str): URL of the webhook service.
        examination_id (str): ID of the examination.
    """

    if error is None:
        output_data = result.as_numpy(model_config["output"][0]["name"])[0]
        status_message = {
            "id": request_uuid,
            "status": "COMPLETED",
            "output": json.loads(output_data),
            "filename": filename,
        }
        response = requests.post(webhook_url, json=status_message)

        if response.status_code == 200:
            log_message = json.dumps(
                {
                    "model": model_config["name"],
                    "examination_id": examination_id,
                    "status": "COMPLETED",
                    "filename": filename,
                    "request_uuid": request_uuid,
                }
            )

            logger.info(log_message)
        else:
            log_message = json.dumps(
                {
                    "model": model_config["name"],
                    "examination_id": examination_id,
                    "status": "ERROR",
                    "filename": filename,
                    "request_uuid": request_uuid,
                    "error": f"Error sending webhook action for {filename, request_uuid}",
                }
            )
            logger.error(log_message)
    else:
        status_message = {
            "id": request_uuid,
            "status": "FAILED",
            "error": str(error),
            "filename": filename,
        }
        response = requests.post(webhook_url, json=status_message)

        if response.status_code == 200:
            log_message = json.dumps(
                {
                    "model": model_config["name"],
                    "examination_id": examination_id,
                    "status": "FAILED",
                    "filename": filename,
                    "request_uuid": request_uuid,
                    "error": str(error),
                }
            )
            logger.error(log_message)
        else:
            log_message = json.dumps(
                {
                    "model": model_config["name"],
                    "examination_id": examination_id,
                    "status": "ERROR",
                    "filename": filename,
                    "request_uuid": request_uuid,
                    "error": f"Error sending webhook action for {filename, request_uuid}",
                }
            )
            logger.error(log_message)

    client.close()

result_image_bucket_callback(model_config, filename, result, error, client, request_uuid, webhook_url, output_bucket_name, examination_id, write_to_gcs=False)

Callback function to process the result of the inference request. Writes the result to a GCS bucket.

Parameters:

Name Type Description Default
model_config dict

Model configuration dictionary.

required
filename str

Name of the file that was processed.

required
initial_resolution tuple

Initial resolution of the image.

required
result list

List of output tensors.

required
error Exception

Error that occurred during the request.

required
request_uuid str

UUID of the request.

required
client object

Triton client object.

required
webhook_url str

URL of the webhook service.

required
write_to_gcs bool

Flag to write the result to a GCS bucket.

False
output_bucket_name str

Name of the output bucket.

required
examination_id str

ID of the examination.

required
Source code in app.py
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
def result_image_bucket_callback(
    model_config: dict,
    filename: str,
    result: Optional[list],
    error: Optional[Exception],
    client: object,
    request_uuid: str,
    webhook_url: str,
    output_bucket_name: str,
    examination_id: str,
    write_to_gcs: bool = False,
) -> None:
    """
    Callback function to process the result of the inference request.
    Writes the result to a GCS bucket.

    Args:
        model_config (dict): Model configuration dictionary.
        filename (str): Name of the file that was processed.
        initial_resolution (tuple): Initial resolution of the image.
        result (list): List of output tensors.
        error (Exception): Error that occurred during the request.
        request_uuid (str): UUID of the request.
        client (object): Triton client object.
        webhook_url (str): URL of the webhook service.
        write_to_gcs (bool): Flag to write the result to a GCS bucket.
        output_bucket_name (str): Name of the output bucket.
        examination_id (str): ID of the examination.
    """
    if error is None:
        output_data = result.as_numpy(model_config["output"][0]["name"])[0].decode("utf-8")
        status_message = {
            "id": request_uuid,
            "status": "COMPLETED",
            "output": json.loads(output_data),
            "filename": filename,
        }
    else:
        output_data = {"error": str(error)}
        status_message = {
            "id": request_uuid,
            "status": "FAILED",
            "error": str(error),
            "filename": filename,
        }

    if write_to_gcs:
        write_json_to_gcs(
            output_bucket_name, output_data, f"{config.output_folder_name}/{request_uuid}.json"
        )

    client.close()

    response = requests.post(webhook_url, json=status_message)

    if response.status_code == 200:
        log_message = json.dumps(
            {
                "model": model_config["name"],
                "examination_id": examination_id,
                "status": "COMPLETED" if error is None else "FAILED",
                "filename": filename,
                "request_uuid": request_uuid,
            }
        )
        logger.info(log_message)
    else:
        log_message = json.dumps(
            {
                "model": model_config["name"],
                "examination_id": examination_id,
                "status": "ERROR",
                "filename": filename,
                "request_uuid": request_uuid,
                "error": f"Error sending webhook action for {filename, request_uuid}",
            }
        )
        logger.error(log_message)

write_json_to_gcs(bucket_name, json_data, output_path)

Write JSON data to a specific folder in a GCS bucket.

Parameters:

Name Type Description Default
bucket_name str

The name of the GCS bucket.

required
json_data dict

The JSON data to be written.

required
output_path str

The GCS path where the JSON file will be stored (e.g., 'folder/output_file.json').

required
Source code in app.py
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
def write_json_to_gcs(bucket_name: str, json_data: dict, output_path: str):
    """
    Write JSON data to a specific folder in a GCS bucket.

    Args:
        bucket_name (str): The name of the GCS bucket.
        json_data (dict): The JSON data to be written.
        output_path (str): The GCS path where the JSON file will be stored (e.g., 'folder/output_file.json').
    """
    # Convert the JSON data to a string
    json_str = json.dumps(json_data, indent=4)

    # Run the blocking GCS code in a thread pool
    _upload_to_gcs(json_str, bucket_name, output_path)
    log_message = json.dumps(
        {
            "model": config.model_name,
            "status": "COMPLETED",
            "filename": output_path,
        }
    )
    logger.info(log_message)